一、論文名稱、課題來源、選題依據
論文名稱:基于bp神經網絡的技術創新預測與評估模型及其應用研究
課題來源:單位自擬課題或省政府下達的研究課題
選題依據:
技術創新預測和評估是企業技術創新決策的前提和依據。通過技術創新預測和評估, 可以使企業對未來的技術發展水平及其變化趨勢有正確的把握, 從而為企業的技術創新決策提供科學的依據, 以減少技術創新決策過程中的主觀性和盲目性。只有在正確把握技術創新發展方向的前提下, 企業的技術創新工作才能沿著正確方向開展,企業產品的市場競爭力才能得到不斷加強。在市場競爭日趨激烈的現代商業中, 企業的技術創新決定著企業生存和發展、前途與命運, 為了確保技術創新工作的正確性,企業對技術創新的預測和評估提出了更高的要求。
二、本課題國內外研究現狀及發展趨勢
現有的技術創新預測方法可分為趨勢外推法、相關分析法和專家預測法三大類。
(1)趨勢外推法。指利用過去和現在的技術、經濟信息, 分析技術發展趨勢和規律, 在分析判斷這些趨勢和規律將繼續的前提下, 將過去和現在的趨勢向未來推演。生長曲線法是趨勢外推法中的一種應用較為廣泛的技術創新預測方法,美國生物學家和人口統計學家raymond pearl提出的pearl曲線(數學模型為: y=l∕[1+a?exp(-b·t)] )及英國數學家和統計學家gompertz提出的gompertz曲線(數學模型為: y=l·exp(-b·t))皆屬于生長曲線, 其預測值y為技術性能指標, t為時間自變量, l、a、b皆為常數。ridenour模型也屬于生長曲線預測法, 但它假定新技術的成長速度與熟悉該項技術的人數成正比, 主要適用于新技術、新產品的擴散預測。
(2)相關分析法。利用一系列條件、參數、因果關系數據和其他信息, 建立預測對象與影響因素的因果關系模型, 預測技術的發展變化。相關分析法認為, 一種技術性能的改進或其應用的擴展是和其他一些已知因素高度相關的, 這樣, 通過已知因素的分析就可以對該項技術進行預測。相關分析法主要有以下幾種: 導前-滯后相關分析、技術進步與經驗積累的相關分析、技術信息與人員數等因素的相關分析及目標與手段的相關分析等方法。
(3)專家預測法。以專家意見作為信息來源, 通過系統的調查、征詢專家的意見, 分析和整理出預測結果。專家預測法主要有: 專家個人判斷法、專家會議法、頭腦風暴法及德爾菲法等, 其中, 德爾菲法吸收了前幾種專家預測法的長處, 避免了其缺點, 被認為是技術預測中最有效的專家預測法。
趨勢外推法的預測數據只能為縱向數據, 在進行產品技術創新預測時, 只能利用過去的產品技術性能這一個指標來預測它的隨時間的發展趨勢, 并不涉及影響產品技術創新的科技、經濟、產業、市場、社會及政策等多方面因素。在現代商業經濟中, 對于產品技術發展的預測不能簡單地歸結為產品過去技術性能指標按時間的進展來類推, 而應系統綜合地考慮現代商業中其他因素對企業產品技術創新的深刻影響。相關分析法盡管可同時按橫向數據和縱向數據來進行預測, 但由于它是利用過去的歷史數據中的某些影響產品技術創新的因素求出的具體的回歸預測式, 而所得到的回歸預測模型往往只能考慮少數幾種主要影響因素, 略去了許多未考慮的因素, 所以, 所建模型對實際問題的表達能力也不夠準確, 預測結果與實際的符合程度也有較大偏差。專家預測法是一種定性預測方法,依靠的是預測者的知識和經驗, 往往帶有主觀性, 難以滿足企業對技術創新預測準確度的要求。以上這些技術創新預測技術和方法為企業技術創新工作的開展做出了很大的貢獻, 為企業技術創新的預測提供了科學的方法論, 但在新的經濟和市場環境下, 技術創新預測的方法和技術應有新的豐富和發展, 以克服自身的不足, 更進一步適應時代發展的需要, 為企業的技術創新工作的開展和企業的生存與發展提供先進的基礎理論和技術方法。
這種情況下, 神經網絡技術就有其特有的優勢, 以其并行分布、自組織、自適應、自學習和容錯性等優良性能, 可以較好地適應技術創新預測和評估這類多因素、不確定性和非線性問題, 它能克服上述各方法的不足。本項目以bp神經網絡作為基于多因素的技術創新預測和評估模型構建的基礎, bp神經網絡由輸入層、隱含層和輸出層構成, 各層的神經元數目不同, 由正向傳播和反向傳播組成, 在進行產品技術創新預測和評估時, 從輸入層輸入影響產品技術創新預測值和評估值的n個因素信息, 經隱含層處理后傳入輸出層, 其輸出值y即為產品技術創新技術性能指標的預測值或產品技術創新的評估值。這種n個因素指標的設置, 考慮了概括性和動態性, 力求全面、客觀地反映影響產品技術創新發展的主要因素和導致產品個體差異的主要因素, 盡管是黑匣子式的預測和評估, 但事實證明它自身的強大學習能力可將需考慮的多種因素的數據進行融合, 輸出一個經非線性變換后較為精確的預測值和評估值。