作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么我們?cè)撊绾螌懸黄^為完美的教案呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。
初中一元二次方程教案篇一
1、一元二次方程的求根公式的推導(dǎo)
2、會(huì)用求根公式解一元二次方程.
3、通過運(yùn)用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運(yùn)算能力,養(yǎng)成良好的運(yùn)算習(xí)慣
重點(diǎn):一元二次方程的求根公式.
難點(diǎn):求根公式的條件:b2 -4ac≥0
一、自學(xué)質(zhì)疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步驟是什么?
3、用配方法解一元二次方程,計(jì)算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實(shí)數(shù)根呢?
二、交流展示:
剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?
三、互動(dòng)探究:
一般地,對(duì)于一元二次方程ax2+bx+c=0
(a≠0),當(dāng)b2-4ac≥0時(shí),它的根是
用求根公式解一元二次方程的方法稱為公式法
由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的.因此,在解一元二次方程時(shí),先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項(xiàng)系數(shù)a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化為一般形式后,在確定a、b、c時(shí),需注意符號(hào).
(2)在運(yùn)用求根公式求解時(shí),應(yīng)先計(jì)算b2-4ac的值;當(dāng)b2-4ac≥0時(shí),可以用公式求出兩個(gè)不相等的實(shí)數(shù)解;當(dāng)b2-4ac<0時(shí),方程沒有實(shí)數(shù)解.就不必再代入公式計(jì)算了.
四、精講點(diǎn)撥:
例1、課本例題
總結(jié):其一般步驟是:
(1)把方程化為一般形式,進(jìn)而確定a、b,c的值.(注意符號(hào))
(2)求出b2-4ac的值.(先判別方程是否有根)
(3)在b2-4ac≥0的前提下,把a(bǔ)、b、c的直代入求根公式,求出 的值,最后寫出方程的.根.
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、糾正反饋:
做書上第p90練習(xí)。
六、遷移應(yīng)用:
例3、一個(gè)直角三角形三邊的長(zhǎng)為三個(gè)連續(xù)偶數(shù),求這個(gè)三角形的三條邊長(zhǎng).
例4、求方程 的兩根之和以及兩根之積
拓展應(yīng)用:關(guān)于 的一元二次方程 的一個(gè)根是 ,則 ;
方程的另一根是